Croatian Critical Mineral Commodity Letters: Magnesium
Main Article Content
Abstract
Magnesium is a critical raw material of high importance to the European Union economy. Magnesium has versatile applications in many industries: the automotive industry (48%), packaging applications (23%), the construction industry (13%), desulphurisation of steel (12%), heavy transportation (air, marine, train; 4%) as well as in medical equipment, sport applications, electrochemical and organic chemistry applications. The Republic of Croatia hosts two major sources of magnesium: (1) primary dolostone deposits and occurrences, mainly used as a high-quality crushed stone aggregate and carbonate mineral raw material for industrial processing, and (2) secondary Mg reject brine from the Nin, Pag and Ston saltpans: (1) Deposits and occurrences of early and late diagenetic dolostone are associated with the South Tethyan Megaplatform (STM; Upper Triassic Hauptdolomite and Lower Jurassic limestone and dolostone) or the Adriatic Carbonate Platform (AdCP; Jurassic limestone and dolostone and Upper Jurassic boundstones, layered and massive dolostone and Lower to Middle Cretaceous dolostone and post-sedimentary, diagenetic breccia). Based on their lithological, mineralogical, and chemical characteristics, STM deposits are considered high-potential magnesium sources, whereas AdCP deposits belong to medium-to-high (Jurassic) and low-potential (Cretaceous) magnesium sources. The overall geological potential of primary magnesium sources at a scale of 1:300,000 has been calculated by excluding areas where exploitation is prohibited. In the resulting areas, exploitation is possible, but additional restrictions arising from the three levels of spatial plans (national, county, and local) must additionally be taken into account. (2) Average annual salt production in Croatia is around 20,000 t. The calculated amount of discharged magnesium from highsaline brines remaining after the precipitation of sodium-chloride is about 2.38 t/annually. The case study on the Đipalo dolostone deposit near Sinj (STM dolostone; exploitation reserves of 5.9 Mt) shows high purity dolostone with MgO > 22 wt%, whereas the sum content of SiO2, Fe2O3 and Al2O3 remains below 1 wt%. The Đipalo dolostone can be used in the refractory material industry, as an agent of fusion in ferrous metallurgy, in the production of cement, glass, ceramics, paper or for magnesium metal production. The prices of various Mg-products range from 1.7 €/t construction mineral raw material, 10 €/t for crushed stone aggregate, 100 €/t for refractory (roasted) dolostone and about 2,250 €/t for 99,0% pure magnesium (February 2024). Dolostone consumption for the Đipalo deposit is estimated to be about 10-15 t of dolostone per tonne of Mg metal produced, depending on the process, however, the estimated CO2 emissions remain a significant negative factor.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors have copyright and publishing rights on all published manuscripts.
References
AGHION, E. & GOLUB, G. (2006): Production technologies of magnesium.– Magnesium Technology: Metallurgy, Design Data, Applications, 29–62. https://doi.org/10.1007/3-540-30812-1
CAPUTO, M.V. (2011): Amazon Basin Potash Perspectives.– In: 45 Congresso Brasileiro de Geologia. Belém, Pará. https://doi.org/10.13140/RG.2.2.11187.63522
CHERUBINI, F., RAUGEI, M. & ULGIATI, S. (2008): LCA of magnesium production: Technological overview and worldwide estimation of environmental burdens.– Resources, Conservation and Recycling, 52/8–9, 1093–1100. https://doi.org/10.1016/j.resconrec.2008.05.001
CROATIAN GEOLOGICAL SURVEY (2009): Geological Map of Republic of Croatia, M 1:300.000.– Croatian Geological Survey, Zagreb.
DORFMAN, S.M., PRAKAPENKA, V.B. & MENG, Y. (2012): Intercomparision of pressure 410 standards (Au, Pt, Mo, MgO, NaCl and Ne) to 2.5 Mbar.– Journal of Geophysical Research, 117, B08210, 1–5. https://doi.org/10.1029/2012JB009292
DRNEK, T. & FRÖMMER, T. (2008): Developments, challenges and trends in Austrian magnesite mining.– Gospodarka surowcami mineralnymi, 24/4-3, 257–266.
EUROPEAN COMMISSION COMMUNICATION (2011): Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions – Tackling the challenges in commodity markets and on raw materials.– Brussels, 2.2.2011, COM(2011) 25 final.
EUROPEAN COMMISSION COMMUNICATION (2014): Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions – On the review of the list of critical raw materials for the EU and the implementation of the Raw Materials Initiative.– Brussels, 26.5.2014, COM(2014) 297 final.
EUROPEAN COMMISSION COMMUNICATION (2017): Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions.– Brussels, 13.9.2017, COM(2017) 490 final.
EUROPEAN COMMISSION COMMUNICATION (2020): Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions – Critical Raw Materials Resilience: Charting a Path towards greater Security and Sustainability.– Brussels, 3.9.2020, COM(2020) 474 final.
GABRIĆ, A. & LUKŠIĆ, B. (1997): Elaborat o rezervama i kakvoći dolomita, karbonatne sirovine za industrijsku preradu u ležistu,"Đipalo" kod Sinja [in Croatian].– Unpubl. Report, Croatian geological survey, Zagreb, 31 p.
GALIĆ, I. & PAVELIĆ, D. (2020): Elaborat o rezervama tehničko-građevnog kamena na eksploatacijskom polju "Pregrada II" - peta obnova [in Croatian].– Unpubl. Report, University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering, Zagreb.
GROHOL, M. & VEEH, C. (2023): Study on the critical raw materials for the EU 2023 – Final report.– European Commission: Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs, 158 p. https://doi.org/10.2873/725585
GUILBERT, J.M. & PARK, C.F. (1986): The Geology of Ore Deposits.– W.H. Freeman and Company, New York, 985 p.
HANSEN, T. & ZANDER, B. (2011): Extraction of silica and magnesium compounds from olivine.– European patent specification EP 1 373 139 B1, Bulletin, 2011/34, 1–5.
HOLLINGBERY, L.A. & HULL, T.R. (2012): The Thermal Decomposition of Natural Mixtures of Huntite and Hydromagnesite.– Thermochimica Acta, 528, 54–52. http://doi.org/10.1016/j.tca.2011.11.002
ILIĆ, M. (1968): Problems of the Genesis and Genetic Classification of Magnesite Deposits.– Geologische Rundschau, 79, 291–299.
JAKIĆ, J., LABOR, M. & MARTINAC, V. (2016): Characterization of dolomitic lime as the base reagent for precipitation of Mg(OH)2 from seawater.– Chemical and Biochemical Engineering Quarterly 30/3, 373–379. http://doi.org/10.15255/CABEQ.2015.2325
JOHNSON, M.C. & WALKER, D. (1993): Brucite [Mg(OH)2] dehydration and the molar volume of H2O to 15 GPa.– American Mineralogist, 78, 271–284.
JONES, E., QADIR, M., VAN VLIET, M.T.H., SMAKHTIN, V. & KANG, S. (2019): The state of desalination and brine production: A global outlook.– Science of the total environment, 657, 1343–1356. http://doi.org/10.1016/j.scitotenv.2018.12.076
KOGEL, J.E., TRIVEDI, N.C., BARKER, J.M. & KRUKOWSKI, S.T. (2006): Industrial Minerals & Rocks: Commodities, Markets, and Uses.– Society for Mining, Metallurgy, and Exploration, 7th edition, 1565 p.
KOROLIJA, B., BOROVIĆ, I., GRIMANI, I. & MARINČIĆ, S. (1976): Osnovna geološka karta SFRJ 1:100 000, list Korčula L33-47 [Basic Geological Map of SFRY 1:100 000, Korčula sheet – in Croatian].– Croatian geological survey, Zagreb (1967-1968); Geological Survey GEMINI, Beograd.
KOROLIJA, B., BOROVIĆ, I., GRIMANI, I., MARINČIĆ, S., JAGAČIĆ, N., MAGAŠ, N. & MILANOVIĆ, M. (1977): Osnovna geološka karta SFRJ 1:100 000, Tumač za List Korčula L33-47 [Basic Geological Map of SFRY 1:100 000, Geology of the Korčula sheet – in Croatian].– Croatian geological survey, Zagreb (1968); Geological Survey GEMINI, Belgrade, 1–53.
LIU, W., PENG, X., LIU, W., ZHANG, X. & WANG, X. (2022): A cost-effective approach to recycle serpentine tailings: Destruction of stable layered structure and solvent displacement crystallization.– International Journal of Mining Science and Technology, 32/3, 595–603. http://doi.org/10.1016/j.ijmst.2022.03.004
LU, H. & NEELAMEGGHAM, N.R. (2021): Industrial Practice of Extracting Magnesium from Serpentine.– In: MILLER, V.M., MAIER, P., JORDON, J.B., NEELAMEGGHAM, N.R. (eds): Magnesium Technology 2021. The Minerals, Metals & Materials Series, 153–159. http://doi.org/10.1007/978-3-030-65528-0_23
MACHOVEC, G. (1980): Solar Energy Index.– Elsevier Science & Technology Books, 417–423. http://doi.org/10.1016/B978-0-08-023888-3.50018-X
MAHMUD, N., FRAGA ALVAREZ, D.V., IBRAHIM, M.H., EL-NAAS, M.H. & ESPOSITO, D.V. (2022): Magnesium recovery from desalination reject brine as pretreatment for membranelles electrolysis.– Desalination, 525, 1–13. http://doi.org/10.1016/j.desal.2021.115489
MORDIKE, B.L. & EBERT, T. (2001): Magnesium Properties — applications — potential.– Materials Science and Engineering: A, 302/1, 37–45. http://doi.org/10.1016/S0921-5093(00)01351-4
MYLLYMÄKI, P., PESONEN, J., ROMAR, H., HU., T., TYNJÄLÄ, P. & LASSI, U. (2019): The use of Ca- and Mg-rich fly ash as a chemical precipitant in the simultaneous removal of nitrogen and phosphorus—recycling and reuse.– Recycling, 4/2, 1–14. http://doi.org/10.3390/recycling4020014
PECO, J. (2018): Potential mobility of toxic elements from Plomin soil contaminated with superhigh sulphur Raša coal and ash [in Croatian].– MSc thesis, University of Zagreb Faculty of Science, 1–77.
POHL, W. (1990): Genesis of magnesite deposits – models and trends.– Geologische Ruddschau, 79/2, 291–299. http://doi.org/10.1007/BF01830626
RAMAKRISHNAN, S. & KOLTUN, P. (2004): Global warming impact of the magnesium produced in China using the Pidgeon process.– Resources, Conservation and Recycling, 42/1, 49–64. http://doi.org/10.1016/j.resconrec.2004.02.003
SHARMA, L., BRIGAITYTE, O., HONER, K., KALFAOGLU, E., SLINKSIENE, R., STREIMIKIS, V., SVIKLAS, A.M. & BALTRUSAITIS, J. (2018): Carnallite-Derived Solid Waste as Potassium (K) and Magnesium (Mg) Source in Granulated Compound NPK Fertilizers.– ACS Sustainable Chemistry & Engineering, 6/7, 9427–9433. http://doi.org/10.1021/acssuschemeng.8b01773
SIMANDL, G.J., SIMANDL, J., ROTELLA, M., FOURNIER, M. & DEBRECINI, A. (2000): Hydromagnesite in British Columbia, Canada.– Energy, 61–64.
SIMANDL, G. J., SCHULTES, H., SIMANDL, J. & PARADIS, S. (2007): Magnesium-Raw Materials, Metal Extraction and Economics-Global Picture.– In: Proceedings of the Ninth Biennial SGA Meeting, Dublin 2007, 827–830.
TAN, J. & RAMAKRISHNA, S. (2021): Applications of Magnesium and Its Alloys: A Review.– Applied Sciences, 11/6861, 1–16. http://doi.org/10.3390/app11156861
VELIĆ, I. (2005): Benthic foraminifera assemblages and stratigraphic subdivision of the Middle Jurassic in carst Dinarides, Adriatic carbonate platform.– In: VELIĆ, I., VLAHOVIĆ, I., BIONDIĆ, R. (Eds): 3rd Croatian Geological Congress, Opatija, Abstract book, Croatian geological survey, Zagreb, 159–160.
VELIĆ, I. & VLAHOVIĆ, I. (2009): Tumač geološke karte 1:300.000 [Geology of the Geological Map of Republic of Croatia 1:300.000 – in Croatian].– Croatian geological survey, Zagreb, 1–147.
VLAHOVIĆ, I., TIŠLJAR, J., FUČEK, L., OŠTRIĆ, N., PRTOLJAN, B., VELIĆ, I. & MATIČEC, D. (2002): The origin and importance of the dolomite-limestone breccia between the Lower and Upper Cretaceous deposits of the Adriatic carbonate platform: An example from Ćićarija Mt. (Istria, Croatia).– Geologia Croatica, 55/1, 45–55.
VLAHOVIĆ, I., TIŠLJAR, J., VELIĆ, I. & MATIČEC, D. (2005): Evolution of the Adriatic Carbonate Platform: Palaeogeography, main events and depositional dynamics.– Palaeogeography, Palaeoclimatology, Palaeoecology, 220, 333–360. http://doi.org/10.1016/j.palaeo.2005.01.011
WARREN, J. (2000): Dolomite: occurrence, evolution and economically important associations.– Earth-Science Reviews, 52/1–3, 1–81. http://doi.org/10.1016/10.1016/S0012-8252(00)00022-2
WILSON, I. & EBNER, F. (2005): A review of the worlds current and potential magnesite resources.– In: Industrial Minerals’ MagMin Event Proceedings Vienna, 41.
ZHANG, Y., XU, R., WANG, L. & SUN, W. (2022): Separation of magnesium from lithium in salt-lake brine through struvite precipitation.– Minerals Engineering, 180, 107468. http://doi.org/10.1016/j.mineng.2022.107468
Web sources:
BRITISH GEOLOGICAL SURVEY (2004): Commodity Profile: Magnesium. Available on https://nora.nerc.ac.uk/id/eprint/534460. Accessed: December 10th, 2023.
CROATIAN GEOLOGICAL SURVEY (2024): Map of Mineral Resources of the Republic of Croatia, Croatian Geological Survey. Available on: https://www.hgi-cgs.hr/karta-mineralnih-sirovina-republike-hrvatske-1200-000/. Accessed on: December 10th, 2023.
CUKON, E. (2016): Technical waste management report, TE Plomin [Elaborat gospodarenja otpadom – in Croatian]. Available on: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjtmbf3gZyEAxWJzgIHHTSaApoQFnoECBAQAQ&url=https%3A%2F%2Fwww.istra-istria.hr%2Fmedia%2Ffiler_public%2F9e%2F34%2F9e34212e-0fa3-4403-aeba-9d724d713be2%2F161107_elaborat_plomin.pdf&usg=AOvVaw0Unro1-vCRk-lKWzIKY1Ea&opi=89978449. Accessed: December 10th, 2023.
EURCO (2024): Available on: https://eurco.hr/sanacija-odlagalista-azbestamravinacka-kava. Accessed on: December 10th, 2023.
INTERNATIONAL MAGNESIUM ASSOCIATION (2023): Magnesium Applications. Available on: https://www.intlmag.org/page/mg_applications_ima. Accessed: November 17th, 2023.
LAROBE MAGNESIUM (2024): Available on: https://www.latrobemagnesium.com/. Accessed on: December 10th, 2023.
MFE MAGNESIUM FOR EUROPE (2024): Available on: https://www.mfe-europe.com/. Accessed on: December 10th, 2023.
STATISTICA (2024): Available on: https://www.statista.com/statistics/604174/distribution-of-potash-reserves-worldwide-by-select-country/. Accessed on: December 10th, 2023.
TOP DOLOMITE SUPPLIERS (2024): Available on: https://arijco.com/top-dolomite-suppliers/. Accessed on: December 10th, 2023.
USGS COUNTRY REPORTS (2022): Annual Commodity Reports: Magnesium. Available on: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiV_aKwiZyEAxVO9gIHHeogBS8QFnoECBIQAQ&url=https%3A%2F%2Fpubs.usgs.gov%2Fperiodicals%2Fmcs2022%2Fmcs2022-magnesium-metal. pdf&usg=AOvVaw2iU9fCS_EBka_7lS4x2coj&opi=89978449. Accessed on: December 10th, 2023.
VELEMA, W.R., BRUINING, H., BULLEN, J.G. & VISSER, J. (2010): Natural Convection Effects on Magnesium Solution Mining.– Available on: https://repository.tudelft.nl/islandora/object/uuid%3Aef37a766-88f6-4291-a625-896e4127508a. Accessed on: December 10th, 2023.
WULANDARI, W., BROOKS, G.A., RHAMDHANI, M.A. & MONAGHAN, B.J. (2010): Magnesium: current and alternative production routes.– In: Proceedings of the Chemeca 2010, Adelaide, Australia, 11 p. Available on: https://www.researchgate.net/publication/258278648_Magnesium_current_and_alternative_production_routes#fullTextFileContent. Accessed on: December 10th, 2023.