Epikarst of Eastern part of Suva Planina Mt.: a new perspective defining from an integrated survey

Main Article Content

Branislav Petrović
Snežana Ignjatović
Živojin Smiljković
Veljko Marinović
Violeta Gajić

Abstract

Human interest in karst groundwater stems from the high-quality water that karst aquifers can accumulate. In Europe, 21.6% of the land is covered by carbonate rocks, with Serbia having 10.3% karst coverage.  Understanding karst aquifers is essential for sustainable water management. The epikarst layer has higher  water permeability and diffuse circulation. This study focuses on the Suva planina Mt. karst aquifer system and  its “first” layer – epikarst. During the survey, an innovative methodology was employed, combining indirect methods like remote sensing with field techniques such as geomorphological research, hydrogeological and  pikarst mapping, geophysical surveys, petrological/sedimentological research, and pedological studies. This  combined approach yielded exceptionally good results. Using satellite imagery (remote sensing) helped define  the general groundwater flow and the distribution of epikarst on the eastern slopes of Suva planina Mt. The  epikarst potential (E) map created, guided further detailed field mapping, improving the understanding of the  area's geology and geomorphology, and identified locations for geophysical surveys and sampling. Field  geomorphological research refined the distribution and characteristics of the epikarst, with hydrogeological  mapping on benchmark profiles providing on-site data. Four categories of epikarst were identified. Geophysical  surveys using vertical electrical sounding offered insights into fractured and karstified zones up to 30-100  metres deep. Petrological research identified limestone types, while pedological analyses defined soil types and  geochemical properties, highlighting the soil and epikarst's role in altering infiltrating water quality. Continued  multidisciplinary research on Suva planina Mt. is essential for understanding groundwater systems. Enhanced  geophysical methods and pre-field drone surveys are recommended for future studies, along with increased soil  sampling from areas of diverse vegetation.

Article Details

Section

Original Scientific Papers

References

CHEN, Z., AULER, A.S., BAKALOWICZ, M., DREW, D., GRIGER, F., HARTMANN, J., JIANG, G., MOOSDORF, N., RICHTS, A., STEVANOVIC, Z., VENI, G. & GOLDSCHEIDER, N. (2017): The World Karst Aquifer Mapping project: concept, mapping procedure and map of Europe.– Hydrogeol J, 25, 771-785. https://doi.org/10.1007/s10040-016-1519-3

FLUGEL, E. (2004): Microfacies of Carbonate Rocks: Analysis, Interpretation and Application.– Springer-Verlag, Berlin, Heidelberg, New York, 976 p. http://dx.doi.org/10.1007/978-3-662-08726-8

FOLK, R.L. (1959): Practical petrographic classification of limestones.– Bulletin American Association Petroleum Geologists, 43, 1-38.

GOLDSCHEIDER, N. & DREW, D. (2007): Methods in karst hydrogeology, international contribution to hydrogeology.– Taylor & Francis/Balkema, London, 264 p.

KLIMCHOUK, A.B. (2000): The formation of epikarst and its role in vadose speleogenesis.– In: KLIMCHOUK, A.B., FORD, D.C., PALMER, A.N. & DREYBRODT, W. (eds.): Speleogenesis: Evolution of karst aquifers. National Speleological Society of America, Huntsville, 261-273.

KLIMCHOUK, A.B. (2004): Towards defining, delimiting and classifying epikarst: Its origin, processes and variants of geomorphic evolution, speleogenesis and evolution of karst aquifers.– Speleogenesis and Evolution of Karst Aquifers, 2/1, 1-13.

MARINOVIĆ, V. & PETROVIĆ, B. (2021): Stochastic simulation and prediction of turbidity dynamics in karst systems. Case study: Mokra karst spring (SE Serbia).– Review of the Bulgarian Geological Society, 82/3, 222–224. https://doi.org/10.52215/rev.bgs.2021.82.3.222

OFFICIAL GAZETTE OF THE REPUBLIC OF SERBIA (2018): No. 30/2018: Regulation on limit values of polluting, harmful, and dangerous substances in soil.

PETROVIĆ, B. (2020a): Intrinsic groundwater vulnerability assessment by multiparameter methods, a case study of Suva planina Mountain (SE Serbia).– Environ Earth Sci, 79, 85. https://doi.org/10.1007/s12665-020-8825-8

PETROVIĆ, B. (2020b): The functioning and impact of epikarst oh the regime, balance and groundwater quality of the eastern part of the Suva planina mountain karst system [in Serbian, Abstract in English].– Unpubl. PhD Thesis, University of Belgrade, 305 p.

PETROVIĆ, B. (2023): The Flow Conditions in the Epikarst Zone of a Karst Aquifer. Case Study: Suva planina Mt., East Serbia.– In: International Scientific Conference, Man and Karst 2022, September 12th - 17th, Custonaci, Italy. Ragusa, 123-129.

PETROVIĆ, B. & MARINOVIĆ, V. (2021): Application of the Discrete Autoregressive – Cross-Regressive Moving Average Model for Predicting the Daily Discharge Values of Mokra and Divljana Springs.– Reports of the Serbian geological society year 2020, 1 – 15.

PETROVIĆ, B. & MARINOVIĆ, V. (2023): Quantitative and Geochemical Characterization of the Mokra Karst Aquifer (SE Serbia) by Time Series Analysis and Stochastic Modelling.– In: ANDREO, B., BARBERÁ, J.A., DURÁN-VALSERO, J.J., GIL-MÁRQUEZ, J.M., MUDARRA, M. (eds): EuroKarst 2022, Málaga. Advances in Karst Science. Springer, Cham. https://doi.org/10.1007/978-3-031-16879-6_8

PETROVIĆ, B., STEVANOVIĆ, Z., MARINOVIĆ, V. & IGNJATOVIĆ S. (2022): Prostorna analiza epikarsta u okviru karstnog sistema istočnog dela Suve planina [Spatial Analysis of Epiкarst Within Karst System of Eastern Part of Suva Planina Mountain – in Serbian].– In: XVI Srpski simpozijum o hidrogeologiji sa međunarodnim učešćem. Univerzitet u Beogradu, Rudarsko-geološki fakultet, Beograd, 365-370.

PETROVIĆ, B., MARINOVIĆ, V. & STEVANOVIĆ, Z. (2023): Characterization of the eastern Suva planina Mt. karst aquifer (SE Serbia) by time series analysis and stochastic modelling.– Environ Earth Sci, 82, 222. https://doi.org/10.1007/s12665-023-10911-5

PETROVIĆ, J. (1976): Jame i pećine SR Srbije [Jamas and caves of SR Srbija – in Serbian].– Vojnoizdavački zavod, Beograd, p. 511.

REYNOLDS, J.M. (2011): An Introduction to Applied and Environmental Geophysics, 2nd Edition.– Wiley-Blackwell, 712 p.

SMILJKOVIĆ, Ž. (2019): Geohemijska karakterizacija zemljišta sa istočnih obronaka Specijalnog rezervata prirode „Suva planina“ [Geochemical characterization of soil from the eastern slopes of the Special Nature Reserve "Suva Planina" – in Serbian].– Unpubl. Master thesis, University of Belgrade, 47 p.

STEVANOVIĆ, Z. (1991): Hidrogeologija karsta Karpato-Balkanida istočne Srbije i mogućnosti vodosnabdevanja [Karst hydrogeology of the Carpatho- Balkanides of eastern Serbia and water supply possibilities – in Serbian].– University of Belgrade, Faculty of Mining and Geology, Belgrade, 245 p.

STEVANOVIĆ, Z. (1994): Karst groundwaters of Carpatho-Balkanides in Eastern Serbia.– In: STEVANOVIĆ Z. & FILIPOVIĆ B. (eds.): Groundwaters in Carbonate Rocks of the Carpatho-Balkan Mountain Range. Carpathian-Balkan Geological Association, Belgrade, 203-237.

STEVANOVIĆ, Z. (2015): Karst Aquifer – Characterization and Engineering.– Springer, 692 p. https://doi.org/10.1007/978-3-319-12850-4

TORRESE, P. (2020): Investigating karst aquifers: Using pseudo 3-D electrical resistivity tomography to identify major karst features.– Journal of Hydrology, 580, 124257. https://doi.org/10.1016/j.jhydrol.2019.124257

VERESS, M., DEAK, G. & MITRE, Z. (2023): The vertical electrical sounding (VES) of the epikarst: a case study of the covered karst of the Bakony region (Hungary).– Acta Carsologica, 52/2-3, 245-258. https://doi.org/10.3986/ac.v52i2-3.12149

VUJISIĆ, T., NAVALA, M., KALENIĆ, M., KRSTIĆ, B., MASLAREVIĆ, LJ., MARKOVIĆ, B., BUKOVIĆ, J. (1971): Osnovna geološka karta SFRJ 1:100.000, Tumač za list Bela Palanka K34-33 [The Basic Geological Map of SFRY 1:100.000, Explanatory text of the Bela Palanka sheet K34-33 – in Serbian].– Savezni geološki zavod, Beograd, 69 p.

WON-IN, K. & CHARUSIRI, P. (2003): Enhancement of thematic mapper satellite images for geological mapping of the Cho Dien area, Northern Vietnam.– International Journal of Applied Earth Observation and Geoinformation, 4/3, 183-193.

Web sources:

AGRICOLUS (2024): NDVI and NDMI vegetation indices: instructions for use, Available at: https://www.agricolus.com/en/vegetation-indices-ndvi-ndmi/. Accessed: 12/06/24.

ARCGIS (2024): Convolution function, Available at: https://desktop.arcgis.com/en/arcmap/latest/manage-data/raster-and-images/convolution-function.htm. Accessed: 11/06/24.

GISGeography (2024): Landsat 8 Bands and Band Combinations, Available at: https://gisgeography.com/landsat-8-bands-combinations/. Accessed: 21/05/24.